3.2.61 \(\int \csc ^2(e+f x) (a+b \tan ^2(e+f x))^p \, dx\) [161]

Optimal. Leaf size=68 \[ -\frac {\cot (e+f x) \, _2F_1\left (-\frac {1}{2},-p;\frac {1}{2};-\frac {b \tan ^2(e+f x)}{a}\right ) \left (a+b \tan ^2(e+f x)\right )^p \left (1+\frac {b \tan ^2(e+f x)}{a}\right )^{-p}}{f} \]

[Out]

-cot(f*x+e)*hypergeom([-1/2, -p],[1/2],-b*tan(f*x+e)^2/a)*(a+b*tan(f*x+e)^2)^p/f/((1+b*tan(f*x+e)^2/a)^p)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 68, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3744, 372, 371} \begin {gather*} -\frac {\cot (e+f x) \left (a+b \tan ^2(e+f x)\right )^p \left (\frac {b \tan ^2(e+f x)}{a}+1\right )^{-p} \, _2F_1\left (-\frac {1}{2},-p;\frac {1}{2};-\frac {b \tan ^2(e+f x)}{a}\right )}{f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]^2*(a + b*Tan[e + f*x]^2)^p,x]

[Out]

-((Cot[e + f*x]*Hypergeometric2F1[-1/2, -p, 1/2, -((b*Tan[e + f*x]^2)/a)]*(a + b*Tan[e + f*x]^2)^p)/(f*(1 + (b
*Tan[e + f*x]^2)/a)^p))

Rule 371

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*((c*x)^(m + 1)/(c*(m + 1)))*Hyperg
eometric2F1[-p, (m + 1)/n, (m + 1)/n + 1, (-b)*(x^n/a)], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 372

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a + b*x^n)^FracPart[p]/
(1 + b*(x^n/a))^FracPart[p]), Int[(c*x)^m*(1 + b*(x^n/a))^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[
p, 0] &&  !(ILtQ[p, 0] || GtQ[a, 0])

Rule 3744

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff^(m + 1)/f), Subst[Int[x^m*((a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2)
^(m/2 + 1)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2]

Rubi steps

\begin {align*} \int \csc ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^p \, dx &=\frac {\text {Subst}\left (\int \frac {\left (a+b x^2\right )^p}{x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\left (\left (a+b \tan ^2(e+f x)\right )^p \left (1+\frac {b \tan ^2(e+f x)}{a}\right )^{-p}\right ) \text {Subst}\left (\int \frac {\left (1+\frac {b x^2}{a}\right )^p}{x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac {\cot (e+f x) \, _2F_1\left (-\frac {1}{2},-p;\frac {1}{2};-\frac {b \tan ^2(e+f x)}{a}\right ) \left (a+b \tan ^2(e+f x)\right )^p \left (1+\frac {b \tan ^2(e+f x)}{a}\right )^{-p}}{f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.43, size = 68, normalized size = 1.00 \begin {gather*} -\frac {\cot (e+f x) \, _2F_1\left (-\frac {1}{2},-p;\frac {1}{2};-\frac {b \tan ^2(e+f x)}{a}\right ) \left (a+b \tan ^2(e+f x)\right )^p \left (1+\frac {b \tan ^2(e+f x)}{a}\right )^{-p}}{f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]^2*(a + b*Tan[e + f*x]^2)^p,x]

[Out]

-((Cot[e + f*x]*Hypergeometric2F1[-1/2, -p, 1/2, -((b*Tan[e + f*x]^2)/a)]*(a + b*Tan[e + f*x]^2)^p)/(f*(1 + (b
*Tan[e + f*x]^2)/a)^p))

________________________________________________________________________________________

Maple [F]
time = 0.21, size = 0, normalized size = 0.00 \[\int \left (\csc ^{2}\left (f x +e \right )\right ) \left (a +b \left (\tan ^{2}\left (f x +e \right )\right )\right )^{p}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)^2*(a+b*tan(f*x+e)^2)^p,x)

[Out]

int(csc(f*x+e)^2*(a+b*tan(f*x+e)^2)^p,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2*(a+b*tan(f*x+e)^2)^p,x, algorithm="maxima")

[Out]

integrate((b*tan(f*x + e)^2 + a)^p*csc(f*x + e)^2, x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2*(a+b*tan(f*x+e)^2)^p,x, algorithm="fricas")

[Out]

integral((b*tan(f*x + e)^2 + a)^p*csc(f*x + e)^2, x)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)**2*(a+b*tan(f*x+e)**2)**p,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^2*(a+b*tan(f*x+e)^2)^p,x, algorithm="giac")

[Out]

integrate((b*tan(f*x + e)^2 + a)^p*csc(f*x + e)^2, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a\right )}^p}{{\sin \left (e+f\,x\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*tan(e + f*x)^2)^p/sin(e + f*x)^2,x)

[Out]

int((a + b*tan(e + f*x)^2)^p/sin(e + f*x)^2, x)

________________________________________________________________________________________